Spinal cord-injured mice that were given the experimental drug LM11A-31 showed marked improvements in their bladder function, notes recent research from Ohio State University.

The experimental drug (LM11A-31) appears to help by blocking the dual activity of pro-nerve growth factor (proNGF) and a receptor called p75. ProNGF is known to be secreted from the cell after nerve injury.

After a month-long treatment after spinal cord injury in mice, bladder volume decreased significantly to a level close to normal, says lead researcher Sung Ok Yoon, an associate professor of biological chemistry and pharmacology at Ohio State, in a media release from Ohio State University.

The study appears in The Journal of Clinical Investigation.

In humans, spinal cord injuries sever the communication between the bladder and the brain, leading to the loss of the normal ability to urinate at will. This leads to bladder over-filling, which causes high pressure and bladder enlargement due to thickening of the muscular bladder walls. This can cause urine to return to the kidney, which can lead to kidney infection and disease, Yoon notes.

People with spinal cord injury typically rely on a catheter to pass urine.

Eventually, per Yoon, a new circuit of nervous-system communication is formed within the spinal cord, and it allows urine to be expelled unexpectedly, causing incontinence.

“There are no approved medications to treat bladder dysfunction brought on by spinal cord injuries, something that is a major concern and diminishes quality of life for these patients,” Yoon says, in the release.

“This drug appears to help maintain near-normal bladder pressure and less unexpected expulsion of urine in mice.”

Because the experimental drug does not restore normal communication between the bladder and the brain, it is certainly not a cure, Yoon adds. However, the study suggests that patients may be likely to experience reduced bladder volume, which would lower the risk of bladder infection and reflux to the kidney, and less incontinence.

“The structure as well as the integrity of the neural communication in the bladder is expected to improve as well, contributing to the overall health of the bladder,” she shares.

[Source(s): Ohio State University, Science Daily]